33 research outputs found

    An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback

    Get PDF
    Abstract Background Haptic display technologies are well suited to relay proprioceptive, force, and contact cues from a prosthetic terminal device back to the residual limb and thereby reduce reliance on visual feedback. The ease with which an amputee interprets these haptic cues, however, likely depends on whether their dynamic signal behavior corresponds to expected behaviors—behaviors consonant with a natural limb coupled to the environment. A highly geared motor in a terminal device along with the associated high back-drive impedance influences dynamic interactions with the environment, creating effects not encountered with a natural limb. Here we explore grasp and lift performance with a backdrivable (low backdrive impedance) terminal device placed under proportional myoelectric position control that features referred haptic feedback. Methods We fabricated a back-drivable terminal device that could be used by amputees and non-amputees alike and drove aperture (or grip force, when a stiff object was in its grasp) in proportion to a myoelectric signal drawn from a single muscle site in the forearm. In randomly ordered trials, we assessed the performance of N=10 participants (7 non-amputee, 3 amputee) attempting to grasp and lift an object using the terminal device under three feedback conditions (no feedback, vibrotactile feedback, and joint torque feedback), and two object weights that were indiscernible by vision. Results Both non-amputee and amputee participants scaled their grip force according to the object weight. Our results showed only minor differences in grip force, grip/load force coordination, and slip as a function of sensory feedback condition, though the grip force at the point of lift-off for the heavier object was significantly greater for amputee participants in the presence of joint torque feedback. An examination of grip/load force phase plots revealed that our amputee participants used larger safety margins and demonstrated less coordination than our non-amputee participants. Conclusions Our results suggest that a backdrivable terminal device may hold advantages over non-backdrivable devices by allowing grip/load force coordination consistent with behaviors observed in the natural limb. Likewise, the inconclusive effect of referred haptic feedback on grasp and lift performance suggests the need for additional testing that includes adequate training for participants.http://deepblue.lib.umich.edu/bitstream/2027.42/116041/1/12984_2015_Article_98.pd

    Evaluation of Velocity Estimation Methods Based on Their Effect on Haptic Device Performance

    No full text
    This paper comparatively evaluates the effect of real-time velocity estimation methods on the passivity and fidelity of virtual walls implemented using haptic interfaces. Impedance width or Z-width is a fundamental measure of performance in haptic devices. Limited accuracy of velocity estimates from position encoder data is an impediment in improving the Z-width in haptic interfaces. We study the efficacy of Levant's differentiator as a velocity estimator to allow passive implementation of higher stiffness virtual walls as compared to some of the commonly used velocity estimators in the field of haptics. We first experimentally demonstrate feasibility of Levant's differentiator as a velocity estimator for haptics applications by comparing Z-width performance achieved with Levant's differentiator and commonly used finite difference method (FDM) cascaded with a low-pass filter. A novel Z-width plotting technique combining the passivity and fidelity of haptic rendering is proposed, and used to compare the haptic device performance obtained with Levant's differentiator, FDM+low-pass filter, first-order adaptive windowing (FOAW), and Kalman-filter-based velocity estimation methods. Simulations and experiments conducted on a custom single degree-of-freedom haptic device demonstrate that the stiffest virtual walls are rendered with velocity estimated using Levant's differentiator, and the highest wall rendering fidelity is achieved by FOAW-based velocity estimation scheme

    Effects of discretization on the K-width of series elastic actuators

    No full text
    Rigid haptic devices enable humans to physically interact with virtual environments, and the range of impedances that can be safely rendered using these rigid devices is quantified by the Z-Width metric. Series elastic actuators (SEAs) similarly modulate the impedance felt by the human operator when interacting with a robotic device, and, in particular, the robot's perceived stiffness can be controlled by changing the elastic element's equilibrium position. In this paper, we explore the K-Width of SEAs, while specifically focusing on how discretization inherent in the computer-control architecture affects the system's passivity. We first propose a hybrid model for a single degree-of-freedom (DoF) SEA based on prior hybrid models for rigid haptic systems. Next, we derive a closed-form bound on the K-Width of SEAs that is a generalization of known constraints for both rigid haptic systems and continuous time SEA models. This bound is first derived under a continuous time approximation, and is then numerically supported with discrete time analysis. Finally, experimental results validate our finding that large pure masses are the most destabilizing operator in human-SEA interactions, and demonstrate the accuracy of our theoretical K-Width bound

    A cable-based series elastic actuator with conduit sensor for wearable exoskeletons

    No full text
    There is currently a scarcity of wearable robotic devices that can practically provide physical assistance in a range of real world activities. Soft wearable exoskeletons, or exosuits, have the potential to be more portable and less restrictive than their rigid counterparts. In this paper, we present the design of an actuation system that has been optimized for use in a soft exosuit for the human arm. The selected design comprises a DC motor and gearbox, a flexible cable conduit transmission, and a custom series elastic force sensor. Placed in series with the transmission conduit, the custom compliant force sensor consists of a translational steel compression spring with a pair of Hall effect sensors for measuring deflection. The custom sensor is validated as an accurate means of measuring cable tension, and it is shown that it can be used in feedback to control the cable tension with high bandwidth. The dynamic effect of the cable-conduit transmission on the force felt at the user interface is characterized by backdriving the system as it renders a range of virtual impedances to the user. We conclude with recommendations for the integration of such an actuation system into a full wearable exosuit

    Kinesthetic Feedback during 2DOF Wrist Movements via a Novel MR-Compatible Robot

    No full text
    We demonstrate the interaction control capabilities of the MR-SoftWrist, a novel MR-compatible robot capable of applying accurate kinesthetic feedback to wrist pointing movements executed during fMRI. The MR-SoftWrist, based on a novel design that combines parallel piezoelectric actuation with compliant force feedback, is capable of delivering 1.5 N·m of torque to the wrist of an interacting subject about the flexion/extension and radial/ulnar axes. The robot workspace, defined by admissible wrist rotation angles, fully includes a circle with a 20 deg radius. Via dynamic characterization, we demonstrate capability for transparent operation with low (10% of maximum torque output) backdrivability torques at nominal speeds. Moreover, we demonstrate a 5.5 Hz stiffness control bandwidth for a 14 dB range of virtual stiffness values, corresponding to 25-125% of the device’s physical reflected stiffness in the nominal configuration. We finally validate the possibility of operation during fMRI via a case study involving one healthy subject. Our validation experiment demonstrates the capability of the device to apply kinesthetic feedback to elicit distinguishable kinetic and neural responses without significant degradation of image quality or task-induced head movements. With this study, we demonstrate the feasibility of MR-compatible devices like the MR-SoftWrist to be used in support of motor control experiments investigating wrist pointing under robot-applied force fields. Such future studies may elucidate fundamental neural mechanisms enabling robot-assisted motor skill learning, which is crucial for robot-aided neurorehabilitation

    Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton

    No full text
    Rehabilitation exoskeletons may make use of myoelectric control to restore in patients with significant motor impairment following a spinal cord injury (SCI) a sense of volitional control over their limb - a crucial component for recovery of movement. Little investigation has been done into the feasibility of using surface electromyography (sEMG) as an exoskeleton control interface for SCI patients, whose impairment manifests in a highly variable way across the patient population. We have demonstrated that by using only a small subset of features extracted from eight bipolar electrodes recording on the upper arm and forearm muscles, we can achieve high predictive accuracy for the intended direction of motion. Five healthy subjects and two SCI subjects performed voluntary isometric contractions while wearing an exoskeleton for the wrist and elbow joints, generating six distinct single and multi-DoF motions in a total of sixteen possible directions. Using linear discriminant analysis, classification performance was then evaluated using randomly selected holdout test data from the same recording session. Commonalities across subjects, both healthy and SCI, were analyzed at the levels of selected features and the values of commonly selected features. Future work will be to investigate group-specific classification of SCI subjects' intended movements for use in the real-time control of a rehabilitation exoskeleton

    Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation

    No full text
    Robotic devices have been clinically verified for use in long duration and high intensity rehabilitation needed for motor recovery after neurological injury. Targeted and coordinated hand and wrist therapy, often overlooked in rehabilitation robotics, is required to regain the ability to perform activities of daily living. To this end, a new coupled hand-wrist exoskeleton has been designed. This paper details the design of the wrist module and several human-related considerations made to maximize its potential as a coordinated hand-wrist device. The serial wrist mechanism has been engineered to facilitate donning and doffing for impaired subjects and to insure compatibility with the hand module in virtual and assisted grasping tasks. Several other practical requirements have also been addressed, including device ergonomics, clinician-friendliness, and ambidextrous reconfigurability. The wrist module's capabilities as a rehabilitation device are quantified experimentally in terms of functional workspace and dynamic properties. Specifically, the device possesses favorable performance in terms of range of motion, torque output, friction, and closed-loop position bandwidth when compared with existing devices. The presented wrist module's performance and operational considerations support its use in a wide range of future clinical investigations

    Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial

    Get PDF
    Background: Robotic rehabilitation of the upper limb following neurological injury has been supported through several large clinical studies for individuals with chronic stroke. The application of robotic rehabilitation to the treatment of other neurological injuries is less developed, despite indications that strategies successful for restoration of motor capability following stroke may benefit individuals with incomplete spinal cord injury (SCI) as well. Although recent studies suggest that robot-aided rehabilitation might be beneficial after incomplete SCI, it is still unclear what type of robot-aided intervention contributes to motor recovery. Methods: We developed a novel assist-as-needed (AAN) robotic controller to adjust challenge and robotic assistance continuously during rehabilitation therapy delivered via an upper extremity exoskeleton, the MAHI Exo-II, to train independent elbow and wrist joint movements. We further enrolled seventeen patients with incomplete spinal cord injury (AIS C and D levels) in a parallel-group balanced controlled trial to test the efficacy of the AAN controller, compared to a subject-triggered (ST) controller that does not adjust assistance or challenge levels continuously during therapy. The conducted study is a stage two, development-of-concept pilot study. Results: We validated the AAN controller in its capability of modulating assistance and challenge during therapy via analysis of longitudinal robotic metrics. For the selected primary outcome measure, the pre–post difference in ARAT score, no statistically significant change was measured in either group of subjects. Ancillary analysis of secondary outcome measures obtained via robotic testing indicates gradual improvement in movement quality during the therapy program in both groups, with the AAN controller affording greater increases in movement quality over the ST controller. Conclusion: The present study demonstrates feasibility of subject-adaptive robotic therapy after incomplete spinal cord injury, but does not demonstrate gains in arm function occurring as a result of the robot-assisted rehabilitation program, nor differential gains obtained as a result of the developed AAN controller. Further research is warranted to better quantify the recovery potential provided by AAN control strategies for robotic rehabilitation of the upper limb following incomplete SCI
    corecore